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A CONVEXITY-PRESERVING AND PERIMETER-DECREASING
PARAMETRIC FINITE ELEMENT METHOD FOR THE
AREA-PRESERVING CURVE SHORTENING FLOW\ast 
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Abstract. We propose and analyze a semidiscrete parametric finite element scheme for solving
the area-preserving curve shortening flow. The scheme is based on Dziuk's approach [SIAM J.
Numer. Anal., 36 (1999), pp. 1808--1830] for the anisotropic curve shortening flow. We prove that
the scheme preserves two fundamental geometric structures of the flow with an initially convex curve:
(i) the convexity-preserving property, and (ii) the perimeter-decreasing property. To the best of our
knowledge, the convexity-preserving property of numerical schemes which approximate the flow is
rigorously proved for the first time. Furthermore, the error estimate of the semidiscrete scheme is
established, and numerical results are provided to demonstrate the structure-preserving properties
as well as the accuracy of the scheme.

Key words. area-preserving curve shortening flow, parametric finite element method, error
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1. Introduction. Consider the volume-preserving mean curvature flow driven
by the motion law

v= (H  - \langle H\rangle )\scrN on \Gamma t,(1.1)

where \Gamma t is a family of smooth hypersurfaces in \BbbR n, v denotes the velocity, \scrN is the
inner normal vector, H represents the scalar mean curvature (with the sign convention
that H is positive for balls), and \langle H\rangle :=

\int 
\Gamma t

Hdsn - 1/
\int 
\Gamma t

dsn - 1 is the average mean
curvature along \Gamma t. It is well known that the volume-preserving mean curvature flow
can be interpreted as the L2-gradient flow of the area functional under configurations
with a fixed volume [37]. The volume-preserving mean curvature flow has the following
fundamental geometric properties:

(i) Volume-preserving [2, Lemma 5.25]. It can be immediately verified that the
volume enclosed by \Gamma t is indeed preserved by noticing

d

dt
| \Omega t| = - 

\int 
\Gamma t

v \cdot \scrN dsn - 1 = - 
\int 
\Gamma t

(H  - \langle H\rangle )dsn - 1 = 0,

where \Omega t is the region enclosed by \Gamma t. In dimension two (i.e., n = 2), it
becomes the area-preserving property for a planar curve.
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1990 WEI JIANG, CHUNMEI SU, AND GANGHUI ZHANG

(ii) Area-shrinking [2, Lemma 5.25]. Actually, one can easily check that

d

dt
| \Gamma t| = - 

\int 
\Gamma t

Hv \cdot \scrN dsn - 1 = - 
\int 
\Gamma t

(H  - \langle H\rangle )2dsn - 1 \leq 0.

When n= 2, it becomes perimeter-decreasing for a planar curve.
(iii) Convexity-preserving. When n = 2, it was shown by Gage that starting

from an initially smooth and convex closed curve, this flow (1.1) preserves
the convexity and evolves the curve into a circle [23]. Furthermore, Huisken
extended the result to higher dimensional cases [25]. For more general initial
data, interested readers may refer to [1, 22].

In this paper, we focus on the planar curve (n = 2). In this case, the volume-
preserving mean curvature flow is also known as the area-preserving curve shortening
flow (AP-CSF), and it can be parametrized by the following equation [23]:\Biggl\{ 

\partial tX =
\bigl( 
H  - 2\pi 

L

\bigr) 
\scrN , \xi \in \BbbS 1, t\in (0, T ],

X(\xi ,0) =X0(\xi ), \xi \in \BbbS 1,
(1.2)

where X(\xi , t) : \BbbS 1 \times [0, T ] \rightarrow \Gamma t \subseteq \BbbR 2, L := L(t) is the length of \Gamma t, by recalling the
theorem of turning tangents [17], i.e.,

\int 
\Gamma t

Hds1 = 2\pi , for a simple closed curve \Gamma t.
Nowadays, the AP-CSF has found important applications in many research ar-

eas, such as materials science and image processing [27], and it can be viewed as an
area-preserving variant of the CSF [35, 42] or a limit flow of the nonlocal Ginzburg--
Landau equation [13]. There have been extensive numerical investigations concerning
the CSF or AP-CSF in the last decades. Among them, parametric finite element
methods (PFEMs) have been widely proposed for simulating the CSF and some other
related geometric flows [3], e.g., the surface diffusion flow [4], and anisotropic geomet-
ric flows [6, 8, 9, 10]. Numerical approximations to the CSF by using PFEMs could
date back to the pioneering work of Dziuk [18] in 1991. Since then, various techniques
have been introduced to make the designed PFEMs more accurate and efficient in
practical simulations, including the method of Barrett, Garcke, and N\"urnberg (the
BGN scheme) [6, 7] based on a novel variational formulation, the method of Deckel-
nick and Dziuk by introducing an artificial tangential velocity [15], and the method
proposed by Elliott and Fritz based on special reparametrizations [21]. These methods
induce appropriate tangential motions that lead to good mesh distribution properties,
which play a vital role in numerical simulations. Recently, more and more attention
has been paid to designing ``structure-preserving"" (e.g., area-preserving or perimeter-
decreasing) PFEMs for solving geometric evolution flows [3, 4, 28].

However, error estimates for these schemes seem difficult and quite challenging.
For example, Dziuk first studied the convergence of a semidiscrete linearly implicit
PFEM for the CSF [19] and anisotropic CSF [20], respectively, based on a finite
difference structure; Li developed a new technique to analyze the convergence of
semidiscrete high-order PFEMs for the CSF [33] and mean curvature flow of closed
surfaces [34], respectively. For Dziuk's fully discrete linearly implicit scheme [19],
very recently an optimal error estimate in H1 was established by Ye and Cui [44].
As for the error analysis about other numerical methods of the CSF or other related
geometric flows, we refer the reader to [5, 15, 21, 26, 30, 31, 39].

As for the AP-CSF, there exist various numerical methods in the literature, e.g.,
the finite difference method [35], the MBO method [29, 40], the crystalline algo-
rithm [43], and PFEMs [11, 38]. Particularly, structure-preserving properties were
investigated in [11, 38, 41, 43]. For example, the semidiscrete PFEM in [11] based
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A STRUCTURE-PRESERVING PFEM FOR AP-CSF 1991

on an elegant variational formulation was shown to preserve the length shortening
property. The semidiscrete polygonal evolution law in [41] based on the definition
of tangent and normal vectors/velocities at each vertex and the fully discrete PFEM
in [38] were shown to be area-preserving and perimeter-decreasing. However, er-
ror estimates have been barely studied for the above-mentioned methods, except for
the crystalline algorithm in [43], where the error estimate was only established for
the curvature since the numerical scheme was designed based on the crystalline ap-
proximation, which merely involves the curvature. To the best of our knowledge,
there exist few numerical analyses of numerical methods for solving the AP-CSF, and
the convexity-preserving property has never been investigated in the literature. The
reason is that the nonlocal term in the AP-CSF has brought about difficulties and
considerable challenges in numerical analysis.

In this paper, we propose a semidiscrete PFEM for the AP-CSF based on Dziuk's
approach for anisotropic CSF [20], investigate its structure-preserving properties, and
present its error analysis. Specifically, we prove that our scheme preserves two impor-
tant geometric structures of the AP-CSF, i.e., convexity-preserving and perimeter-
decreasing properties. As far as we know, this is the first work to rigorously prove the
convexity-preserving property and to give the error estimate of numerical methods
for solving the AP-CSF.

To start, (1.2) can be written more explicitly as

\partial tX =
1

| \partial \xi X| 
\partial \xi 

\biggl( 
\partial \xi X

| \partial \xi X| 

\biggr) 
 - 2\pi 

L

\biggl( 
\partial \xi X

| \partial \xi X| 

\biggr) \bot 

,(1.3)

where (a, b)\bot := ( - b, a). This naturally yields a weak formulation: for any v \in 
(H1(\BbbS 1))2, it holds that\int 

\BbbS 1
| \partial \xi X| \partial tX \cdot v d\xi +

\int 
\BbbS 1

\partial \xi X

| \partial \xi X| 
\cdot \partial \xi v d\xi +

\int 
\BbbS 1

2\pi 

L
(\partial \xi X)\bot \cdot v d\xi = 0.(1.4)

As mentioned in [19], the derived linearly implicit PFEM from the above formulation
for the CSF (with the last term missing) may fail to preserve the length shortening
property of the CSF. To overcome this, Dziuk proposed another scheme based on
the lumping of masses in [19] for the CSF. Here we utilize a similar approach: find
a solution Xh(\xi , t) \in Vh \times [0, T ] satisfying the weak form (2.4) with initial condition
Xh(\xi ,0) = IhX

0, where Vh is a vector-valued Lagrange finite element space consisting
of a piecewise linear polynomial and Ih is the standard Lagrange interpolation. Similar
to [14], the semidiscrete scheme focuses on the motion of the initial polygon, which
is determined by the evolution of the vertices. We show that if the initial curve
is convex, then the evolved polygon remains convex all the time. Moreover, the
perimeter of the polygon is decreasing. To show the convexity-preserving property,
we characterize the convexity of a polygon by the positivity of the oriented area of all
adjacent triangles, which will be shown by a contradiction argument. Surprisingly, the
perimeter-decreasing property can be reduced to a pure trigonometric inequality when
the polygon remains convex. We note that nondegeneration of vertices is necessary to
ensure the evolved polygons are well behaved. This will be guaranteed by the error
estimate of the scheme, which shows that the semidiscrete scheme (2.4) converges in
H1 at the first order, and the lower bound of the edge lengths of the polygon could
stay positive all the time.

The rest of the paper is organized as follows. In section 2, we start with the spa-
tial discretization which approximates the AP-CSF and summarize our main results.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

05
/1

5/
25

 to
 8

6.
14

2.
19

.2
1 

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



1992 WEI JIANG, CHUNMEI SU, AND GANGHUI ZHANG

In section 3, we prove that the numerical scheme rigorously preserves two impor-
tant geometric structures of the flow, i.e., the convexity-preserving and perimeter-
decreasing properties. Then, we present the proof of the error estimate of the scheme
in section 4. Finally, some numerical results produced by the scheme are provided in
section 5 to validate our theoretical results.

2. Spatial discretization and main results. Let 0 = \xi 0 < \xi 1 < \cdot \cdot \cdot < \xi N = 2\pi 
be a partition of \BbbS 1 = [0,2\pi ]. We denote hj = \xi j  - \xi j - 1 by the length of the interval
Ij := [\xi j - 1, \xi j ] and h=maxj hj . Throughout the paper, we use a periodic index, i.e.,
fj = fj\pm N when involved. We assume that the partition and the exact solution are
regular in the following senses, respectively.

Assumption 2.1. There exist constants Cp and CP such that

min
j

hj \geq Cph, | hj+1  - hj | \leq CPh
2, 1\leq j \leq N.

Assumption 2.2. Suppose that the unique solution of (1.2) with an initial value
X0 \in H2(\BbbS 1) satisfies X \in W 1,\infty \bigl( [0, T ],H2(\BbbS 1)

\bigr) 
, i.e.,

K(X) := \| X\| W 1,\infty ([0,T ],H2(\BbbS 1)) <\infty .

We further assume that there exist constants 0<\kappa 1 <\kappa 2 such that

\kappa 1 \leq | \partial \xi X(\xi , t)| \leq \kappa 2 \forall (\xi , t)\in \BbbS 1 \times [0, T ].

We define the following finite element space consisting of piecewise linear functions
satisfying periodic boundary conditions:

Vh =
\bigl\{ 
v \in C0(\BbbS 1,\BbbR 2) : v| Ij \in P1(Ij), 1\leq j \leq N, v(\xi 0) = v(\xi N )

\bigr\} 
,

where P1 denotes all polynomials with degrees at most 1. For any continuous function
v \in C0(\BbbS 1,\BbbR 2), the linear interpolation Ihv \in Vh is uniquely determined through
Ihv(\xi j) = v(\xi j) for all 1\leq j \leq N and can be explicitly written as Ihv(\xi ) =

\sum N
j=1 v(\xi j)

\varphi j(\xi ), where \varphi j represents the standard Lagrange basis function satisfying \varphi j(\xi i) =
\delta ij . We have the following basic estimates from finite element theory.

Lemma 2.1 (see [12]). Under Assumption 2.1, there exists a constant C depending
on Cp,CP such that the following estimates hold:

(i) Interpolation estimate. For any Y \in H2(\BbbS 1), we have

\| Y  - IhY \| L2 \leq Chk\| Y \| Hk , k= 1,2; \| Y  - IhY \| L\infty \leq Ch1/2\| Y \| H1 ,

\| \partial \xi (Y  - IhY )\| L2 \leq Ch\| Y \| H2 , \| \partial \xi IhY \| L2 \leq C\| Y \| H1 .
(2.1)

(ii) Inverse estimate. For vh \in Vh, we have

\| vh\| L\infty \leq Ch - 1/2\| vh\| L2 , \| vh\| H1 \leq Ch - 1\| vh\| L2 .(2.2)

Definition 2.2. We call a function

Xh(\xi , t) =

N\sum 
j=1

Xj(t)\varphi j(\xi ) : \BbbS 1 \times [0, T ]\rightarrow \BbbR 2(2.3)

a semidiscrete solution of (1.3) if it satisfies the following weak formulation:

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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A STRUCTURE-PRESERVING PFEM FOR AP-CSF 1993\int 
\BbbS 1
| \partial \xi Xh| \partial tXh \cdot vh d\xi +

\int 
\BbbS 1

\partial \xi Xh

| \partial \xi Xh| 
\cdot \partial \xi vh d\xi 

+

\int 
\BbbS 1

h2| \partial \xi Xh| 
6

\partial \xi \partial tXh \cdot \partial \xi vh d\xi +
\int 
\BbbS 1

2\pi 

Lh
(\partial \xi Xh)

\bot \cdot vh d\xi = 0 \forall vh \in Vh,

(2.4)

with initial condition Xh(\xi ,0) = IhX
0, where Lh represents the perimeter of the

evolved curve (image of Xh), i.e.,

Lh :=

N\sum 
j=1

hj | \partial \xi Xh| | Ij =
N\sum 
j=1

| Xj  - Xj - 1| =:

N\sum 
j=1

qj ,

and h is a piecewise constant h= hj on Ij.

Remark 2.1. A similar version of (2.4) was proposed and analyzed in [19, (9)
and (15)] and [20, Definition 4.1] for CSF and anisotropic CSF, respectively. The

introduction of the third term
\int 
\BbbS 1

h2| \partial \xi Xh| 
6 \partial \xi \partial tXh \cdot \partial \xi vhd\xi in (2.4) gives rise to the

so-called mass-lumped scheme (similar to (3.1)) that preserves the length shortening
property for the CSF, which was missing for the original formulation (e.g., (1.4)). On
the other hand, a more natural explanation was given in [39, (1.6) and (3.12)], where
it was shown that (2.4) is equivalent to the following scheme:\int 
\BbbS 1
| \partial \xi Xh| Ih(\partial tXh \cdot vh) d\xi +

\int 
\BbbS 1

\partial \xi Xh

| \partial \xi Xh| 
\cdot \partial \xi vh d\xi +

\int 
\BbbS 1

2\pi 

Lh
(\partial \xi Xh)

\bot \cdot vh d\xi =0 \forall vh \in Vh,

which looks like the original version (1.4) with the Lagrangian interpolation introduced
for the first term.

Next we present the main results of this paper.

Theorem 2.3 (convexity-preserving). Suppose the initial curve Xh(\xi ,0) = IhX
0

is a convex N -polygon; then it is always a convex N -polygon during the evolution by
(2.4) if qj > 0 for all j.

Theorem 2.4 (perimeter-decreasing). Let Xh be the solution of (2.4) with convex
initial data; then the perimeter of the closed curve is decreasing, i.e.,

d

dt
Lh \leq 0.(2.5)

Remark 2.2. For the cases of classical CSF or anisotropic CSF and the corre-
sponding solutions based on similar formulations as in (2.4), by direct computations
based on a finite difference structure, it was shown in [19, 20] that the length of each
element of Xh is decreasing, i.e., q\prime j(t) \leq 0 for 1 \leq j \leq N . This directly implies the
perimeter-decreasing property. We point out that this property can also be obtained
by standard energy estimates for the CSF. However, in our AP-CSF case, both argu-
ments fail to derive the perimeter-decreasing property. We have to carry out a more
careful investigation in which the convexity property plays a vital role (section 3.2).

Remark 2.3. We would like to point out that our scheme (2.4) cannot strictly
mimic the area-preserving property of AP-CSF in the discrete form. As shown in
Figure 5.1(b), our scheme has an area loss at \scrO (h2). The area-preserving property
of AP-CSF can be achieved at the discrete level by using the BGN-type schemes as
proposed in [4, 28, 38], but the question of how to prove the convexity-preserving
property and establish the error estimates of the BGN-type schemes is still open.
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1994 WEI JIANG, CHUNMEI SU, AND GANGHUI ZHANG

Theorem 2.5 (error estimate). Let X(\xi , t) be a solution of (1.3) satisfying As-
sumption 2.2. Assume that the partition of \BbbS 1 satisfies Assumption 2.1. Then there
exists h0 > 0 such that for all 0< h\leq h0, there exists a unique semidiscrete solution
Xh for (2.4). Furthermore, the solution satisfies\int T

0

\| \partial tX  - \partial tXh\| 2L2ds+ sup
[0,T ]

\| X  - Xh\| 2H1 \leq Ch2,

where h0 and C depend on Cp,CP , \kappa 1, \kappa 2, T , and K(X). In particular, we have

min
j

qj(t)> 0 \forall t\in [0, T ].(2.6)

3. Convexity-preserving and perimeter-decreasing properties. Similar
to what was done in [16], we rewrite (2.4) into a lumped mass formulation. More
precisely, taking

vh = (\varphi j ,0) =

\biggl( 
\xi  - \xi j - 1

hj
\chi Ij +

\xi j+1  - \xi 

hj+1
\chi Ij+1

,0

\biggr) 
in (2.4), where \chi is the characteristic function, calculations in [20] give\int 

\BbbS 1
| \partial \xi Xh| \partial tXh \cdot vh d\xi +

\int 
\BbbS 1

\partial \xi Xh

| \partial \xi Xh| 
\cdot \partial \xi vh d\xi +

\int 
\BbbS 1

h2| \partial \xi Xh| 
6

\partial \xi \partial tXh \cdot \partial \xi vh d\xi 

=
qj + qj+1

2
\.X
[1]
j  - 

\bigl( 
\scrT [1]
j+1  - \scrT [1]

j

\bigr) 
,

where a[1] denotes the first component of the vector a\in \BbbR 2, and

\scrT j :=
Xj  - Xj - 1

| Xj  - Xj - 1| 
, \scrN j =

\biggl( 
Xj  - Xj - 1

| Xj  - Xj - 1| 

\biggr) \bot 

.

For the last term involving the perimeter, we similarly compute\int 
\BbbS 1

2\pi 

Lh
(\partial \xi Xh)

\bot \cdot vh d\xi 

=

\int \xi j

\xi j - 1

2\pi 

Lh

qj
hj

\scrN j \cdot 
\biggl( 
\xi  - \xi j - 1

hj
,0

\biggr) 
d\xi +

\int \xi j+1

\xi j

2\pi 

Lh

qj+1

hj+1
\scrN j+1 \cdot 

\biggl( 
\xi j+1  - \xi 

hj+1
,0

\biggr) 
d\xi 

=
\pi 

Lh
qj\scrN [1]

j +
\pi 

Lh
qj+1\scrN [1]

j+1.

Similarly taking vh = (0,\varphi j) yields the equation for the second component. Thus the
weak formulation (2.4) is equivalent to the following lumped mass formulation:

qj + qj+1

2
\.Xj = \scrT j+1  - \scrT j  - 

\pi 

Lh
(qj\scrN j + qj+1\scrN j+1) = \scrT j+1  - \scrT j  - 

\pi 

Lh
(Xj+1  - Xj - 1)

\bot .

(3.1)

Hence it remains to solve the ODE system (3.1), and the image of Xh is a polygon
with Xj(t) as the vertices.

For further studies, we derive some important formulae which will be used fre-
quently. Straightforward calculations as in [16, Proposition 4.1], [20, Lemmas 3.1 and
4.2] and [39, Lemmas 2.4 and 3.2] lead to
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A STRUCTURE-PRESERVING PFEM FOR AP-CSF 1995

\partial t| \partial \xi X| = - | \partial \xi X| | \partial tX| 2 + \partial tX \cdot R| \partial \xi X| ,(3.2)

d

dt
qj = - 1

qj + qj+1
| \scrT j+1  - \scrT j | 2  - 

1

qj + qj - 1
| \scrT j - 1  - \scrT j | 2 + \scrT j \cdot (Rj  - Rj - 1)(3.3)

= - qj + qj+1

4
| \.Xj  - Rj | 2  - 

qj + qj - 1

4
| \.Xj - 1  - Rj - 1| 2 + \scrT j \cdot (Rj  - Rj - 1) ,(3.4)

where for simplicity we denote

R := - 2\pi 

L
\scrN , Rj := - 2\pi 

Lh

\scrN jqj +\scrN j+1qj+1

qj + qj+1
.(3.5)

By using above quantities, (3.1) can also be written as

\.Xj  - Rj = 2(\scrT j+1  - \scrT j)/(qj + qj+1).(3.6)

In this section, we will prove that this semidiscrete geometric flow preserves the
convexity of polygons under the nondegeneration property of vertices, which can be
guaranteed by (2.6). Furthermore, the perimeter-decreasing property is also shown
for convex initial data.

3.1. Proof of Theorem 2.3. First, we carry out some clarifications concerning
a polygon. We denote \scrP = (Y1, . . . , YN ) as an N -polygon with Yj being its vertices and
Yj - 1Yj being the edge connecting Yj - 1 and Yj . We emphasize that \scrP = (Y1, . . . , YN )
has exactly N sides, i.e., none of any three adjacent points are collinear. We say \scrP is
a convex polygon if it is the boundary of a convex set. Without loss of generality, we
assume that Yj is arranged in an anticlockwise way. We define the oriented area of
three points Y1, Y2, Y3 \in \BbbR 2 as

Area(Y1, Y2, Y3) :=
1

2

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
1 x1 y1
1 x2 y2
1 x3 y3

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| = 1

2
(Y3  - Y2) \cdot (Y2  - Y1)

\bot ,

where Yi = (xi, yi), i = 1,2,3. The following characterizations of convexity are
straightforward.

Lemma 3.1. Let \scrP = (X1, . . . ,XN ) be an N -polygon. The following statements
are equivalent:

(i) The N -polygon \scrP = (X1, . . . ,XN ) is convex.
(ii) Any internal angle \angle Xj - 1XjXj+1 <\pi for j = 1, . . . ,N .
(iii) Sj := Area(Xj - 1,Xj ,Xj+1)> 0 for j = 1, . . . ,N .
(iv) Sk

j := Area(Xj - 1,Xj ,Xk)> 0 for j = 1, . . . ,N and k \not = j  - 1, j.
Here, we set X0 =XN and XN+1 =X1 when involved.

Proof. Clearly we have (i)\leftrightarrow (ii)\leftrightarrow (iii) and (iv)\Rightarrow (iii). It suffices to show (i)\Rightarrow (iv).
Indeed, by the support property of convex polygons [24, Theorem 4.2], for any X \in 
Xj - 1Xj , there exists a support hyperplane \ell (X) such that \scrP is contained in one of
the two closed halfspaces determined by \ell (X). It is obvious that Xj - 1Xj \subseteq \ell (X). In
particular, for any k \not = j - 1, j, Xk lies in the same halfspace determined by \ell (X), i.e.,
there exists a nonzero vector \scrN \in \BbbR 2 such that

\scrN \cdot (Xj  - Xj - 1) = 0, \scrN \cdot (Xk  - Xj - 1)> 0 (k \not = j  - 1, j).(3.7)

Thus we can write \scrN = \varepsilon (Xj  - Xj - 1)
\bot . Noticing that

2Sk
j = (Xk  - Xj) \cdot (Xj  - Xj - 1)

\bot = (Xk  - Xj - 1) \cdot \scrN /\varepsilon , k \not = j  - 1, j,
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1996 WEI JIANG, CHUNMEI SU, AND GANGHUI ZHANG

which together with (iii) implies \varepsilon > 0, this yields (iv) by recalling (3.7), and the proof
is completed.

Inspired by (2.3) and (3.1), to prove Theorem 2.3, it suffices to show that for any
t > 0, the N -polygon \scrP = (X1, . . . ,XN ) is convex. We first compute the evolution
formula of the oriented area of the triangles consisting of three adjacent vertices.

Lemma 3.2. Under the flow (3.1), if qj > 0 for any j, then the oriented area Sj(t)
satisfies

d

dt
Sj(t) = - aj \cdot Sj + bj \cdot Sj - 2

j+1 + cj \cdot Sj+2
j +

1

qj + qj+1

\pi 

Lh
| Xj+1  - Xj - 1| 2

+
1

qj - 1 + qj

\pi 

Lh
(Xj  - Xj+1) \cdot (Xj  - Xj - 2)

+
1

qj+1 + qj+2

\pi 

Lh
(Xj  - Xj - 1) \cdot (Xj  - Xj+2),

(3.8)

where aj , bj , cj are positive functions defined by

aj =
2

qjqj - 1
+

2

qjqj+1
+

2

qj+1qj+2
, bj =

2

qj - 1(qj - 1 + qj)
, cj =

2

qj+2(qj+1 + qj+2)
.

Proof. By definition, it can be observed that

Sj =
1

2
(Xj+1  - Xj) \cdot (Xj  - Xj - 1)

\bot =
qjqj+1

2
\scrT j+1 \cdot \scrN j .

Employing the flow equation (3.1), we derive

d

dt
Sj =

1

2

d

dt

\bigl( 
Xj+1 \cdot X\bot 

j +Xj \cdot X\bot 
j - 1  - Xj+1 \cdot X\bot 

j - 1

\bigr) 
=

1

2

dXj+1

dt
\cdot (X\bot 

j  - X\bot 
j - 1) - 

1

2

dXj

dt
\cdot (X\bot 

j+1  - X\bot 
j - 1) +

1

2

dXj - 1

dt
\cdot (X\bot 

j+1  - X\bot 
j )

\triangleq : J1 + J2 + J3,

where we have used the property u \cdot v\bot =  - v \cdot u\bot for any u, v \in \BbbR 2. Applying (3.1),
one can calculate Jj as

(qj+1 + qj+2)J1 =
qj
2
(qj+1 + qj+2) \.Xj+1 \cdot \scrN j

= qj

\Bigl( 
\scrT j+2  - \scrT j+1  - 

\pi 

Lh

\bigl( 
Xj+2  - Xj

\bigr) \bot \Bigr) \cdot \scrN j

=
Xj+2  - Xj

qj+2
\cdot qj\scrN j  - 

\biggl( 
1 +

qj+1

qj+2

\biggr) 
\scrT j+1 \cdot qj\scrN j  - 

\pi 

Lh
(Xj+2  - Xj) \cdot qj\scrT j

=
2

qj+2
Sj+2
j  - 

\biggl( 
2

qj+1
+

2

qj+2

\biggr) 
Sj  - 

\pi 

Lh
(Xj  - Xj - 1) \cdot (Xj+2  - Xj).

Similarly one easily gets

(qj + qj+1)J2 = - 
\biggl( 

2

qj
+

2

qj+1

\biggr) 
Sj +

\pi 

Lh
| Xj+1  - Xj - 1| 2 ,

(qj - 1 + qj)J3 = - 
\biggl( 

2

qj - 1
+

2

qj

\biggr) 
Sj +

2

qj - 1
Sj - 2
j+1 +

\pi 

Lh
(Xj  - Xj+1) \cdot (Xj  - Xj - 2).

Combining the above equations together yields (3.8) immediately.
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A STRUCTURE-PRESERVING PFEM FOR AP-CSF 1997

Now we turn to the proof of convexity-preservation.

Proof of Theorem 2.3. Define the function F (t) := min\{ Sj(t), 1 \leq j \leq N\} . It
follows from the assumption that F (0) > 0. By the definition of N -polygon and
Lemma 3.1(iii), it suffices to show F (t)> 0 for t\in (0, T ].

We argue by contradiction. Suppose the contrary; by continuity there exists the
smallest time 0< t0 \leq T such that F (t0) = 0. Then we have the following:

(1) there exists some triangle such that the oriented area achieves zero at t0;
without loss of generality, we may assume S2(t0) =Area(X1,X2,X3) (t0) = 0;

(2) the N -polygon \scrP (t) = (X1(t), . . . ,XN (t)) is convex for 0 \leq t < t0; hence by
Lemma 3.1(iv), it holds that

Sk
j (t)> 0, \forall 0\leq t < t0, \forall j = 1, . . . ,N, \forall k \not = j  - 1, j.

Thus by (3.8), one has

0\geq d

dt
S2(t0) = b2 \cdot S0

3(t0) + c2 \cdot S4
2(t0) +Q(t0),(3.9)

where

Q(t0) =
1

q2 + q3

\pi 

Lh
| X3  - X1| 2(t0) +

1

q1 + q2

\pi 

Lh
(X2  - X3) \cdot (X2  - X0) (t0)

+
1

q3 + q4

\pi 

Lh
(X2  - X1) \cdot (X2  - X4) (t0).

Notice that (1) implies that X1(t0),X2(t0),X3(t0) are collinear. There are two possi-
bilities: (i) (X2  - X1) \cdot (X3  - X2)(t0)> 0; (ii) (X2  - X1) \cdot (X3  - X2)(t0)< 0. Next we
discuss it case by case.

Case (i). (X2 - X1) \cdot (X3 - X2)(t0)> 0. First by (2) and continuity, we easily find
that S0

3(t0) \geq 0, S4
2(t0) \geq 0. We claim that Q(t0) \geq 0. Actually, notice that in this

case it holds that

| X3  - X1| (t0) = | X3  - X2| (t0) + | X2  - X1| (t0) = q2(t0) + q3(t0),

which implies

\pi 

Lh

| X3  - X1| 2

q2 + q3
(t0) =

\pi 

Lh

(q2 + q3)
2

q2 + q3
(t0) =

\pi 

Lh
(q2 + q3) (t0).

On the other hand, by the triangle inequality, one can estimate

1

q1 + q2

\pi 

Lh
(X2  - X3) \cdot (X2  - X0)\geq  - 1

q1 + q2

\pi 

Lh
(q3 \cdot (q1 + q2)) = - \pi 

Lh
q3,

1

q3 + q4

\pi 

Lh
(X2  - X1) \cdot (X2  - X4)\geq  - \pi 

Lh
q2.

Thus

Q(t0)\geq 
\pi 

Lh
(q2 + q3) (t0) - 

\pi 

Lh
q3(t0) - 

\pi 

Lh
q2(t0) = 0.

Recalling (3.9), all the above inequalities become equalities, i.e., S0
3(t0) = S4

2(t0) = 0,
and

| X2  - X0| (t0) = q1(t0) + q2(t0), | X2  - X4| (t0) = q2(t0) + q3(t0).

This means X0,X1,X2,X3,X4 are collinear at t0 and are arranged in order, i.e.,
(Xj+1  - Xj)(t0) = dj(X1  - X0)(t0) with dj > 0, j = 1,2,3. In particular,

S3(t0) = 0, (X3  - X2) \cdot (X4  - X3)(t0)> 0.
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1998 WEI JIANG, CHUNMEI SU, AND GANGHUI ZHANG

Repeating the above procedure another N - 4 times, we get that at time t0, all vertices
(X0,X1, . . . ,XN ) are collinear and are arranged in order, i.e.,

Xj+1(t0) - Xj(t0) = dj(X1(t0) - X0(t0)), dj > 0, j = 1,2, . . . ,N  - 1,

which contradicts the periodic condition X0 =XN .
Case (ii). (X2  - X1) \cdot (X3  - X2)(t0) < 0. This means (X3  - X2)(t0) = d2(X2  - 

X1)(t0) with d2 < 0. By (2) and continuity, we have S3(t0) \geq 0, S4
2(t0) \geq 0. On the

other hand, by definition, one finds

S3(t0) =
1

2
(X4  - X3) \cdot (X3  - X2)

\bot (t0) =
1

2
(X4  - X2) \cdot (X3  - X2)

\bot (t0)

=
d2
2
(X4  - X2) \cdot (X2  - X1)

\bot (t0) = d2S
4
2(t0)\leq 0.

It follows that S3(t0) = 0 and X1,X2,X3,X4 are collinear. We claim that

(X4  - X3) \cdot (X3  - X2)(t0)< 0.

Otherwise, Case (i) happens for the collinear points X2,X3,X4. Differentiating S3 at
t0 and repeating the arguments as in Case (i) involving S3 will lead to the conclusion
that X1,X2,X3,X4,X5 are collinear and are arranged in order, which contradicts the
premise that (X2  - X1) \cdot (X3  - X2)(t0)< 0. Thus it holds that

S3(t0) = 0, (X4  - X3) \cdot (X3  - X2)(t0)< 0.

Repeating this argument, we can conclude that all verticesX1,X2, . . . ,XN are collinear;
furthermore, every three adjacent vertices are interlaced, i.e.,

(Xj+1  - Xj) \cdot (Xj  - Xj - 1)(t0)< 0, j = 1, . . . ,N.

In particular, all exterior angles of the polygon \scrP (t0) are \pi . On the other hand,
noticing each exterior angle \alpha j is continuous, by continuity and convexity, we have

N\pi =

N\sum 
j=1

\alpha j(t0) = lim
t\rightarrow t0

N\sum 
j=1

\alpha j(t) = 2\pi ,

which leads to a contradiction since N \geq 3.

Remark 3.1. A similar argument holds for Dziuk's semidiscrete scheme [19] for
the CSF. More precisely, under nondegeneration of vertices (qj > 0) we can first prove
that if the initial polygon is convex, then the evolved polygon under the semidiscrete
scheme of the CSF is also convex unless all vertices are collinear at some t0 > 0, in
which case the area vanishes, i.e., Area(\scrP (t0)) = 0. On the other hand, applying the
error estimate of the scheme for the CSF [19, 20], we arrive at

| Area(\Gamma t0) - Area(\scrP (t0))| =
\bigm| \bigm| \bigm| \bigm| \int 

\BbbS 1
\partial \xi x \cdot y d\xi  - 

\int 
\BbbS 1
\partial \xi xh \cdot yh d\xi 

\bigm| \bigm| \bigm| \bigm| 
\leq 
\int 
\BbbS 1
| \partial \xi x - \partial \xi xh| \cdot | y| d\xi +

\int 
\BbbS 1
| \partial \xi xh| \cdot | y - yh| d\xi 

\leq C sup
[0,T ]

\| X  - Xh\| H1(\BbbS 1) \leq Ch,

where \Gamma t represents the real curve driven by the CSF. This implies that Area(\scrP (t0))
stays away from zero if Area(\Gamma t) has a positive lower bound for t \in (0, T ] and h is
small enough. This leads to a contradiction!
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3.2. Proof of Theorem 2.4.
Proof. Applying (3.3), we get the derivative of the perimeter

d

dt
Lh =

N\sum 
j=1

d

dt
qj =

N\sum 
j=1

\biggl( 
 - 1

qj + qj+1
| \scrT j+1  - \scrT j | 2  - 

1

qj + qj - 1
| \scrT j - 1  - \scrT j | 2

\biggr) 

+
2\pi 

Lh

N\sum 
j=1

\biggl( 
 - qj+1

qj + qj+1
\scrT j \cdot \scrN j+1 +

qj - 1

qj + qj - 1
\scrT j \cdot \scrN j - 1

\biggr) 

= - 2

N\sum 
j=1

| \scrT j+1  - \scrT j | 2

qj + qj+1
 - 2\pi 

Lh

N\sum 
j=1

\scrT j \cdot \scrN j+1,

where we have used the fact that

N\sum 
j=1

\biggl( 
 - qj+1

qj + qj+1
\scrT j \cdot \scrN j+1 +

qj - 1

qj + qj - 1
\scrT j \cdot \scrN j - 1

\biggr) 

=

N\sum 
j=1

\biggl( 
 - qj+1

qj + qj+1
\scrT j \cdot \scrN j+1  - 

qj
qj + qj+1

\scrN j+1 \cdot \scrT j
\biggr) 
= - 

N\sum 
j=1

\scrT j \cdot \scrN j+1.

We denote \alpha j by the exterior angle of the polygon at Xj . By Theorem 2.3, \scrP (t)

remains convex for all t, which implies that 0<\alpha j <\pi for j = 1, . . . ,N , and
\sum N

j=1\alpha j =
2\pi . Direct computations yield

| \scrT j+1  - \scrT j | 2 = 2 - 2cos\alpha j = 4sin2(\alpha j/2) and \scrT j \cdot \scrN j+1 = - sin\alpha j .

By the Cauchy--Schwarz inequality, one easily gets

N\sum 
j=1

2 sin
\Bigl( \alpha j

2

\Bigr) 
\leq 

\left(  N\sum 
j=1

4 sin2
\bigl( \alpha j

2

\bigr) 
qj + qj+1

\right)  1
2
\left(  N\sum 

j=1

qj + qj+1

\right)  1
2

= (2Lh)
1
2

\left(  N\sum 
j=1

4 sin2
\bigl( \alpha j

2

\bigr) 
qj + qj+1

\right)  1
2

.

Hence we derive

dLh

dt
= - 2

N\sum 
j=1

\Biggl( 
4 sin2

\bigl( \alpha j

2

\bigr) 
qj + qj+1

 - \pi 

Lh
sin\alpha j

\Biggr) 
\leq  - 2

Lh

\left(   2

\left(  N\sum 
j=1

sin
\Bigl( \alpha j

2

\Bigr) \right)  2

 - \pi 
N\sum 
j=1

sin\alpha j

\right)   \leq 0,

where in the last inequality we have utilized a trigonometric inequality (cf. Lemma 3.3
below) and the proof is completed.

Lemma 3.3. Define

fN (\beta 1, . . . , \beta N ) :=

\left(  N\sum 
j=1

sin\beta j

\right)  2

 - 1

2

\left(  N\sum 
j=1

\beta j

\right)  \left(  N\sum 
j=1

sin(2\beta j)

\right)  , 0\leq \beta j \leq 
\pi 

2
.

Then it holds that fN (\beta 1, . . . , \beta N )\geq 0.

Proof. We prove fN (\beta 1, . . . , \beta N )\geq 0 by induction. For N = 1, we have

f1(\beta 1) = sin2 \beta 1  - 
\beta 1

2
\cdot sin(2\beta 1) = sin\beta 1 cos\beta 1 (tan\beta 1  - \beta 1)\geq 0.
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2000 WEI JIANG, CHUNMEI SU, AND GANGHUI ZHANG

Now suppose fN - 1(\beta 1, . . . , \beta N - 1)\geq 0; we first compute

\partial fN (\beta 1, . . . , \beta N )

\partial \beta N
= 2cos\beta N \cdot 

N\sum 
j=1

sin\beta j  - 
1

2

N\sum 
j=1

sin(2\beta j) - 
N\sum 
j=1

\beta j \cdot cos(2\beta N )

\geq 2cos2 \beta N \cdot 
N\sum 
j=1

sin\beta j  - 
N\sum 
j=1

sin\beta j cos\beta j  - 
N\sum 
j=1

\beta j \cdot cos(2\beta N )

=

N\sum 
j=1

(sin\beta j  - sin\beta j cos\beta j  - (\beta j  - sin\beta j) \cdot cos(2\beta N ))

\geq 
N\sum 
j=1

(sin\beta j  - sin\beta j cos\beta j  - (\beta j  - sin\beta j)) =:

N\sum 
j=1

Bj(\beta j).

Notice that

\partial Bj

\partial \beta j
= cos\beta j  - cos2 \beta j + sin2 \beta j  - (1 - cos\beta j) = 2cos\beta j  - 2cos2 \beta j \geq 0;

this implies that Bj is increasing and, particularly,

Bj(\beta j)\geq Bj(0) = 0, \beta j \in [0, \pi /2], j = 1, . . . ,N.

Hence one gets \partial fN (\beta 1,...,\beta N )
\partial \beta N

\geq 0, and by induction,

fN (\beta 1, . . . , \beta N )\geq fN (\beta 1, . . . , \beta N - 1,0) = fN - 1(\beta 1, . . . , \beta N - 1)\geq 0,

which completes the proof.

4. Proof of Theorem 2.5. In this section, we present the error estimate by
following the lines of Dziuk's argument [20] and Pozzi and Stinner's computation [39].
We establish the stability estimate and length element difference under the assumption
of boundedness of the semidiscrete length element. Then a bound of the semidiscrete
length element is given. All above preliminary estimates together with the continuity
argument enable us to derive the desired error bound. Throughout this section, we
assume that Assumptions 2.1 and 2.2 are always valid, and we denote C > 0 by a
general constant that may change from line to line. For simplicity, we omit the space
whenever the norm is defined on \BbbS 1.

We first give the stability estimate.

Lemma 4.1. Assume further that the solution of (2.4) satisfies

inf
\xi 
| \partial \xi Xh| \geq c0 > 0 and sup

\xi 
| \partial \xi Xh| \leq C0 \forall 0\leq t\leq T \ast \leq T.(4.1)

Then for any t\in [0, T \ast ], we have

\int t

0

\int 
\BbbS 1
| \partial tX  - \partial tXh| 2qhd\xi ds+ sup

0\leq s\leq t

\int 
\BbbS 1
| \scrT  - \scrT h| 2qhd\xi \leq C

\int t

0

\| q - qh\| 2L2ds+Ch2,

(4.2)

where \scrT =
\partial \xi X
| \partial \xi X| ,\scrT h =

\partial \xi Xh

| \partial \xi Xh| , q = | \partial \xi X| , qh = | \partial \xi Xh| , and C depends on Cp, CP , \kappa 1,

c0, C0, and K(X).
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A STRUCTURE-PRESERVING PFEM FOR AP-CSF 2001

Proof. We first notice that the boundedness of the length element will imply the
boundedness of the perimeter. Indeed, by Assumption 2.2 and (4.1), one easily gets

2\pi \kappa 1 \leq L\leq 2\pi \kappa 2, 2\pi c0 \leq Lh \leq 2\pi C0 \forall t\in [0, T \ast ].(4.3)

Recalling \partial \xi X \not = 0, \partial \xi Xh \not = 0, | \scrT | = | \scrT h| = 1, this enables us to write the following:

| \partial \xi X  - \partial \xi Xh| 2 = | \partial \xi X| 2 + | \partial \xi Xh| 2  - 2\partial \xi X \cdot \partial \xi Xh

= (q - qh)
2 + 2qqh  - 2qqh\scrT \cdot \scrT h

= (q - qh)
2 + qqh(2 - 2\scrT \cdot \scrT h) = (q - qh)

2 + qqh| \scrT  - \scrT h| 2.
(4.4)

Taking the difference between (1.4) and (2.4), we obtain that the error equation\int 
\BbbS 1
(| \partial \xi X| \partial tX  - | \partial \xi Xh| \partial tXh) \cdot vh d\xi +

\int 
\BbbS 1
(\scrT  - \scrT h) \cdot \partial \xi vh d\xi 

+

\int 
\BbbS 1

\biggl( 
2\pi 

L
(\partial \xi X)

\bot  - 2\pi 

Lh
(\partial \xi Xh)

\bot 
\biggr) 
\cdot vh d\xi =

\int 
\BbbS 1

h2| \partial \xi Xh| 
6

\partial \xi \partial tXh \cdot \partial \xi vh d\xi 

holds for any vh \in Vh. Taking vh = Ih(\partial tX) - \partial tXh \in Vh in the above equation yields\int 
\BbbS 1
| \partial tX  - \partial tXh| 2qhd\xi +

\int 
\BbbS 1
(\scrT  - \scrT h) (\partial \xi \partial tX  - \partial \xi \partial tXh)d\xi 

=

\int 
\BbbS 1
\partial tX \cdot (qh  - q) (Ih\partial tX  - \partial tXh)d\xi +

\int 
\BbbS 1

h2qh
6

\partial \xi \partial tXh \cdot \partial \xi (Ih\partial tX  - \partial tXh)d\xi 

+

\int 
\BbbS 1
qh \cdot (\partial tX  - \partial tXh)(\partial tX  - Ih\partial tX)d\xi +

\int 
\BbbS 1
(\scrT  - \scrT h) \cdot (\partial \xi \partial tX  - \partial \xi Ih\partial tX)d\xi 

+

\int 
\BbbS 1

2\pi 

L
(\partial \xi X  - \partial \xi Xh)

\bot \cdot (\partial tXh  - Ih\partial tX)d\xi 

+

\int 
\BbbS 1

\Bigl( 2\pi 
L

 - 2\pi 

Lh

\Bigr) 
(\partial \xi Xh)

\bot \cdot (\partial tXh  - Ih\partial tX)d\xi \triangleq : J1 + J2 + J3 + J4 + J5 + J6.

The estimates of the second term on the left side and Jj for 1 \leq j \leq 4 can be found
in [20, Lemma 5.1] and read as\int 

\BbbS 1
(\scrT  - \scrT h) \cdot (\partial \xi \partial tX  - \partial \xi \partial tXh)d\xi 

\geq d

dt

\biggl( \int 
\BbbS 1
(1 - \scrT \cdot \scrT h) qhd\xi 

\biggr) 
 - C\| \partial \xi \partial tX\| L\infty 

\biggl( \int 
\BbbS 1
| \scrT  - \scrT h| 2qhd\xi + \| q - qh\| 2L2

\biggr) 
,

J1 \leq \varepsilon 

\int 
\BbbS 1
| \partial tX  - \partial tXh| 2qhd\xi +C(\varepsilon )\| \partial tX\| 2L\infty 

\int 
\BbbS 1

(q - qh)
2

qh
d\xi +C\| qh\| 2L\infty \| \partial tX\| 2H1h2

\leq \varepsilon 

\int 
\BbbS 1
| \partial tX  - \partial tXh| 2 qhd\xi +C(\varepsilon )\| \partial tX\| 2L\infty \| q - qh\| 2L2 +Ch2\| \partial tX\| 2H1 ,

J2 \leq 
1

24
\| qh\| L\infty \| \partial tX\| 2H1h2 \leq Ch2\| \partial tX\| 2H1 ,

J3 \leq \varepsilon 

\int 
\BbbS 1
| \partial tX  - \partial tXh| 2qhd\xi +C(\varepsilon )\| qh\| L\infty \| \partial tX\| 2H1h2

\leq \varepsilon 

\int 
\BbbS 1
| \partial tX  - \partial tXh| 2qhd\xi +C(\varepsilon )h2\| \partial tX\| 2H1 ,

J4 \leq C\| \partial tX\| H2\| \scrT  - \scrT h\| L2h\leq C

\int 
\BbbS 1
| \scrT  - \scrT h| 2qhd\xi +Ch2\| \partial tX\| 2H2 ,
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2002 WEI JIANG, CHUNMEI SU, AND GANGHUI ZHANG

where \varepsilon is a generic small positive constant which will be chosen later. It remains to
estimate J5 and J6. For J5, we decompose it as J5 = J51 + J52 with

J51 =

\int 
\BbbS 1

2\pi 

L
(\partial \xi X  - \partial \xi Xh)

\bot \cdot (\partial tX  - Ih\partial tX)d\xi ,

J52 =

\int 
\BbbS 1

2\pi 

L
(\partial \xi X  - \partial \xi Xh)

\bot \cdot (\partial tXh  - \partial tX)d\xi .

Applying Assumption 2.2, (4.3), (4.4), and the interpolation estimate (2.1), we derive

J51 \leq C

\int 
\BbbS 1
| \partial \xi X  - \partial \xi Xh| 2 d\xi +C

\int 
\BbbS 1
| \partial tX  - Ih\partial tX| 2d\xi 

=C

\biggl( \int 
\BbbS 1
qqh

\Bigl( 
| \scrT  - \scrT h| 2 + (q - qh)

2
\Bigr) 
d\xi + \| \partial tX  - Ih\partial tX\| 2L2

\biggr) 
\leq C \| \partial \xi X\| L\infty 

\int 
\BbbS 1
| \scrT  - \scrT h| 2 qhd\xi +C

\int 
\BbbS 1
(q - qh)

2d\xi +Ch2\| \partial tX\| 2H1 ,

J52 \leq C(\varepsilon )

\int 
\BbbS 1
| \partial \xi X  - \partial \xi Xh| 2 d\xi + \varepsilon 

\int 
\BbbS 1
| \partial tXh  - \partial tX| 2 qhd\xi 

=C(\varepsilon )

\int 
\BbbS 1
qqh| \scrT  - \scrT h| 2 + (q - qh)

2d\xi + \varepsilon 

\int 
\BbbS 1
| \partial tXh  - \partial tX| 2 qhd\xi 

\leq C(\varepsilon )\| \partial \xi X\| L\infty 

\int 
\BbbS 1
| \scrT  - \scrT h| 2 qhd\xi +C(\varepsilon )\| q - qh\| 2L2 + \varepsilon 

\int 
\BbbS 1
| \partial tXh  - \partial tX| 2 qhd\xi .

Similarly we decompose J6 = J61 + J62 with

J61 =

\int 
\BbbS 1

\Bigl( 2\pi 
L

 - 2\pi 

Lh

\Bigr) 
(\partial \xi Xh)

\bot \cdot (\partial tX  - Ih\partial tX)d\xi ,

J62 =

\int 
\BbbS 1

\Bigl( 2\pi 
L

 - 2\pi 

Lh

\Bigr) 
(\partial \xi Xh)

\bot \cdot (\partial tXh  - \partial tX)d\xi .

Notice that

| L - Lh| \leq \| q - qh\| L1 \leq C\| q - qh\| L2 ;(4.5)

this together with (4.3), (4.1), and (2.1) leads to

J61 \leq C| L - Lh| 2 +C\| \partial tX  - Ih\partial tX\| 2L2 \leq C\| q - qh\| 2L2 +Ch2\| \partial tX\| 2H1 ,

J62 \leq C

\int 
\BbbS 1
| Lh  - L| q

1
2

h | \partial tXh  - \partial tX| d\xi \leq C(\varepsilon )| Lh  - L| 2 + \varepsilon 

\int 
\BbbS 1
qh | \partial tXh  - \partial tX| 2 d\xi 

\leq C(\varepsilon )\| q - qh\| 2L2 + \varepsilon 

\int 
\BbbS 1
qh| \partial tXh  - \partial tX| 2d\xi .

Combining the above inequalities, we obtain\int 
\BbbS 1
| \partial tX  - \partial tXh| 2qhd\xi +

d

dt

\int 
\BbbS 1
(1 - \scrT \cdot \scrT h) qhd\xi \leq 4\varepsilon 

\int 
\BbbS 1
| \partial tX  - \partial tXh| 2qhd\xi 

+C(\varepsilon )h2\| \partial tX\| 2H2 +C(\varepsilon ,K(X))\| q - qh\| 2L2 +C(\varepsilon ,K(X))

\int 
\BbbS 1
| \scrT  - \scrT h| 2qhd\xi .

Choosing \varepsilon small enough, integrating both sides with respect to time from 0 to t,
noticing that
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A STRUCTURE-PRESERVING PFEM FOR AP-CSF 2003\int 
\BbbS 1
(1 - \scrT \cdot \scrT h) (0)qh(0)d\xi =

1

2

\int 
\BbbS 1
| \scrT  - \scrT h| 2 (0)qh(0)d\xi 

\leq C

\int 
\BbbS 1
| \partial \xi X  - \partial \xi Xh| 2(0)d\xi \leq C\| \partial \xi (X  - IhX)(0)\| 2L2 \leq Ch2\| X0\| 2H2 ,

we are led to the estimate (4.2) with appropriate constant C by applying Gronwall's
inequality and Sobolev embedding H1(\BbbS 1) \lhook \rightarrow L\infty (\BbbS 1).

Lemma 4.2. Suppose\int 
\BbbS 1
| \scrT  - \scrT h| 2 qhd\xi + \| q - qh\| 2L2 \leq C1h

2 \forall t\in [0, T \ast ];

then there exists a constant h0 such that for any 0<h\leq h0, we have

inf
\xi 
qh \geq 3\kappa 1/4 and sup

\xi 
qh \leq 3\kappa 2/2 \forall t\in [0, T \ast ],

where the constant h0 depends on C1,Cp,CP , \kappa 1, \kappa 2, and K(X).

Proof. Applying the triangle inequality, the interpolation error estimate (2.1),
and the inverse estimate (2.2), we can derive

\| \partial \xi X  - \partial \xi Xh\| L\infty \leq \| \partial \xi X  - Ih\partial \xi X\| L\infty + \| \partial \xi Xh  - Ih\partial \xi X\| L\infty 

\leq Ch1/2\| \partial \xi X\| H1 +Ch - 1/2 \| \partial \xi Xh  - Ih\partial \xi X\| L2

\leq Ch1/2\| X\| H2 +Ch - 1/2 \| \partial \xi Xh  - \partial \xi X\| L2 .

The assumption and equality (4.4) imply

\| \partial \xi X  - \partial \xi Xh\| L2 \leq 
\biggl( \int 

\BbbS 1
qqh| \scrT  - \scrT h| 2d\xi 

\biggr) 1/2

+ \| q - qh\| L2 \leq 
\sqrt{} 

C1

\bigl( 
1 + \| \partial \xi X\| 1/2L\infty 

\bigr) 
h.

Then it follows that

\| \partial \xi X  - \partial \xi Xh\| L\infty \leq C (K(X),C1)h
1/2,

and the conclusion follows by recalling Assumption 2.2.

In order to estimate the length element difference, we first give the following
preliminary lemma by following the lines of [39, Lemmas 3.2 and 4.1].

Lemma 4.3. Under the assumptions of Lemma 4.1, there exists a constant C
depending on \kappa 1,Cp,CP , c0,C0, T such that the following estimates hold for t\in [0, T \ast ]:

| R - Rj | \leq C (| L - Lh| + | \scrT  - \scrT j | + | \scrT  - \scrT j+1| ) , j = 1, . . . ,N,(4.6) \int t

0

(qj + qj+1)| \.Xj  - Rj | 2ds\leq Ch, j = 1, . . . ,N,(4.7)

where R and Rj are defined as in (3.5). Moreover, we have the estimates on Ij:

j+1\sum 
k=j - 1

\| \scrT  - \scrT k\| 2L2(Ij)
\leq Ch2\| X\| 2H2(Sj)

+C\| \scrT  - \scrT h\| 2L2(Sj)
,

j\sum 
k=j - 1

\| \partial tX  - \.Xk\| 2L2(Ij)
\leq Ch2\| \partial tX\| 2H1(Ij)

+C\| \partial tX  - \partial tXh\| 2L2(Ij)
,

j+1\sum 
k=j - 1

\| qhj  - qk\| 2L2(Ij)
\leq Ch4\| X\| 2H2(Sj)

+Ch2\| q - qh\| 2L2(Sj)
,

(4.8)

with Sj = Ij \cup Ij+1 \cup Ij - 1.
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2004 WEI JIANG, CHUNMEI SU, AND GANGHUI ZHANG

Proof. First, (4.6) can be easily derived by employing Assumption 2.1 and (4.1):

| R - Rj | =
\bigm| \bigm| \bigm|  - 2\pi 

L
\scrN +

2\pi 

Lh

\scrN jqj +\scrN j+1qj+1

qj + qj+1

\bigm| \bigm| \bigm| 
\leq 
\bigm| \bigm| \bigm|  - 2\pi 

L
\scrN +

2\pi 

Lh
\scrN 
\bigm| \bigm| \bigm| + \bigm| \bigm| \bigm| 2\pi 

Lh

qj (\scrN  - \scrN j)

qj + qj+1

\bigm| \bigm| \bigm| + \bigm| \bigm| \bigm| 2\pi 
Lh

qj+1 (\scrN  - \scrN j+1)

qj + qj+1

\bigm| \bigm| \bigm| 
\leq C (| L - Lh| + | \scrT  - \scrT j | + | \scrT  - \scrT j+1| ) .

For (4.7), equation (3.4) implies\int t

0

(qj + qj+1)| \.Xj  - Rj | 2 + (qj + qj - 1)| \.Xj - 1  - Rj - 1| 2ds

= 4

\int t

0

\scrT j \cdot (Rj  - Rj - 1) - 
d

dt
qj ds

\leq 4

\int t

0

\scrT j \cdot 
2\pi 

Lh

\biggl( 
 - \scrN jqj +\scrN j+1qj+1

qj + qj+1
+

\scrN jqj +\scrN j - 1qj - 1

qj + qj - 1

\biggr) 
ds+ 4qj(0)

\leq C

\int t

0

\bigm| \bigm| \bigm| \scrT j \cdot \scrN j+1qj+1

qj + qj+1

\bigm| \bigm| \bigm| + \bigm| \bigm| \bigm| \scrT j \cdot \scrN j - 1qj - 1

qj + qj - 1

\bigm| \bigm| \bigm| ds+Ch

\leq \varepsilon 

\int t

0

| \scrT j+1  - \scrT j | 2

qj + qj+1
+

| \scrT j - 1  - \scrT j | 2

qj + qj - 1
ds+C(\varepsilon )

\int t

0

q2j+1

qj + qj+1
+

q2j - 1

qj + qj - 1
ds+Ch

\leq \varepsilon 

\int t

0

| \scrT j+1  - \scrT j | 2

qj + qj+1
+

| \scrT j - 1  - \scrT j | 2

qj + qj - 1
ds+C(\varepsilon )h

=
\varepsilon 

4

\int t

0

(qj + qj+1)| \.Xj  - Rj | 2 + (qj + qj - 1)| \.Xj - 1  - Rj - 1| 2ds+C(\varepsilon )h,

where for the second inequality we used (4.3) and (2.1) to get that

2\pi 

Lh
\leq C, qj(0) = hj | \partial \xi X0

h| = hj | \partial \xi IhX0| \leq C(X)h,

for the third inequality we employed Young's inequality and the fact \scrT j \cdot \scrN j = 0 to
derive \bigm| \bigm| \bigm| \bigm| \scrT j \cdot \scrN j+1qj+1

qj + qj+1

\bigm| \bigm| \bigm| \bigm| = \bigm| \bigm| \bigm| \bigm| (\scrT j  - \scrT j+1) \cdot 
\scrN j+1qj+1

qj + qj+1

\bigm| \bigm| \bigm| \bigm| 
\leq | \scrT j  - \scrT j+1| 

qj+1

qj + qj+1
\leq \varepsilon 

| \scrT j  - \scrT j+1| 2

qj + qj+1
+C(\varepsilon )

q2j+1

qj + qj+1
,

and for the last equality we used (3.6). Obviously (4.7) follows by taking \varepsilon = 1.
The estimates in (4.8) can be established by using arguments similar to those in [39,
Lemma 4.1] and are omitted here for brevity.

Next we present the key length difference estimate with the aid of Lemma 4.3.

Lemma 4.4. Under the assumptions of Lemma 4.1, we have

\| q - qh\| 2L2 \leq C

\int t

0

\int 
\BbbS 1
| \partial tX  - \partial tXh| 2 qhd\xi ds+C

\int t

0

\int 
\BbbS 1
| \scrT  - \scrT h| 2 qhd\xi ds+Ch2,

where C is a constant depending on Cp,CP , \kappa 1, c0,C0, T
\ast , and K(X).
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Proof. By definition, one has\int 
\BbbS 1
(q(\xi , t) - qh(\xi , t))

2
d\xi =

N\sum 
j=1

\int 
Ij

(q(\xi , t) - qj(t)/hj)
2d\xi .

By integration for d
dt (hjq - qj), we can write

(hjq - qj)(t) = (hjq - qj)(0) +

\int t

0

(hj\partial tq - \.qj) ds=: P +

\int t

0

A ds,

where, by the interpolation error estimate (2.1) and inverse estimate (2.2), P satisfies

| P | = hj

\bigm| \bigm| | \partial \xi X0|  - | \partial \xi IhX0| 
\bigm| \bigm| 
Ij
\leq Ch\| \partial \xi (X0  - IhX

0)\| L\infty (Ij) \leq Ch3/2\| X0\| H2(Ij).

Applying (3.2) and (3.4), on each grid element Ij = [\xi j - 1, \xi j ], we can write A as

A=
d

dt
(hjq - qj) = - 

\biggl( 
hjq

2
| \partial tX  - R| 2  - qj + qj+1

4
| \.Xj  - Rj | 2

\biggr) 
 - 
\biggl( 
hjq

2
| \partial tX  - R| 2  - qj + qj - 1

4
| \.Xj - 1  - Rj - 1| 2

\biggr) 
 - (hjq(\partial tX  - R) \cdot R+ \scrT j \cdot (Rj  - Rj - 1))\triangleq : - A+  - A -  - \widehat A.

The terms
\int t

0
| A+| ds and

\int t

0
| A - | ds are estimated in [39, Lemma 4.4] and read as

\int t

0

(| A+| + | A - | )ds\leq CQj +Ch

\left(  \int t

0

j\sum 
k=j - 1

| \partial tX  - R - ( \.Xk  - Rk)| 2ds

\right)  1/2

,

Qj :=

\biggl( \int t

0

\bigl( 
| hjq - qj | 2 + | hjq - qj+1| 2 + | hjq - qj - 1| 2

\bigr) 
ds

\biggr) 1/2

,

where (4.7) has been used. Applying (4.6), we immediately get\int t

0

(| A+| + | A - | )ds\leq CQj +ChTj +ChYj +Ch

\biggl( \int t

0

| L - Lh| 2 ds

\biggr) 1/2

,

Tj :=

\left(  \int t

0

j+1\sum 
k=j - 1

| \scrT  - \scrT k| 2ds

\right)  1/2

, Yj :=

\biggl( \int t

0

| \partial tX  - \.Xj | 2 + | \partial tX  - \.Xj - 1| 2ds
\biggr) 1/2

.

It remains to estimate
\int t

0
| \widehat A| ds. By definition, one has

\widehat A=
hjq

2
(\partial tX  - R) \cdot 

\Bigl( 
 - 2\pi 

L
\scrN 
\Bigr) 
 - 2\pi 

Lh

qj+1

qj + qj+1
\scrT j \cdot \scrN j+1

+
hjq

2
(\partial tX  - R) \cdot 

\Bigl( 
 - 2\pi 

L
\scrN 
\Bigr) 
+

2\pi 

Lh

qj - 1

qj + qj - 1
\scrT j \cdot \scrN j - 1 \triangleq : \widehat A1 + \widehat A2.

Recalling (3.6), we observe that

\scrT j \cdot \scrN j+1 = \scrT j \cdot (\scrT j+1  - \scrT j)\bot = - \scrN j \cdot (\scrT j+1  - \scrT j) = - qj + qj+1

2
\scrN j \cdot 

\bigl( 
\.Xj  - Rj

\bigr) 
,

which implies
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\widehat A1 = hjq (\partial tX  - R) \cdot 
\Bigl( 
 - \pi 

L
\scrN +

\pi 

Lh
\scrN j

\Bigr) 
+ (qj+1  - hjq) (\partial tX  - R) \cdot \pi 

Lh
\scrN j +

\bigl( \bigl( 
\.Xj  - Rj

\bigr) 
 - (\partial tX  - R)

\bigr) 
\cdot \pi 

Lh
qj+1\scrN j .

Therefore, by the assumptions and (4.6), we can estimate\int t

0

| \widehat A1| ds\leq Ch

\int t

0

\bigm| \bigm| \bigm| \pi \scrN 
L

 - \pi \scrN j

Lh

\bigm| \bigm| \bigm| + | \.Xj  - Rj  - \partial tX +R| ds+C

\int t

0

| qj+1  - hjq| ds

\leq Ch

\int t

0

| L - Lh| +
j+1\sum 
k=j

| \scrT  - \scrT k| ds+C

\int t

0

| qj+1  - hjq| ds+Ch

\int t

0

| \.Xj  - \partial tX| ds

\leq Ch

\biggl( \int t

0

| L - Lh| 2 ds

\biggr) 1/2

+CQj +ChTj +ChYj ,

and similar estimates can be established for
\int t

0
| \widehat A2| ds.

To summarize, we obtain the following estimate on Ij :

| hjq - qj | \leq Ch3/2\| X0\| H2(Ij) +Ch

\biggl( \int t

0

\| q - qh\| 2L2ds

\biggr) 1/2

+CQj +ChTj +ChYj ,

where we have used (4.5). Applying (4.8), we get

\| hjq(t) - qj(t)\| 2L2(Ij)
\leq Ch4

\biggl( 
\| X0\| 2H2(Ij)

+

\int t

0

\| \partial tX\| 2H1(Ij)
+ \| X\| 2H2(Sj)

ds

\biggr) 
+Ch2

\int t

0

h\| q - qh\| 2L2 + \| q - qh\| 2L2(Sj)
+ \| \scrT  - \scrT h\| 2L2(Sj)

+ \| \partial tX  - \partial tXh\| 2L2(Sj)
ds.

Summing up over all grid elements Ij yields

Ch2\| q - qh\| 2L2 \leq Ch4 +Ch2

\int t

0

\| q - qh\| 2L2 + \| \scrT  - \scrT h\| 2L2 + \| \partial tX  - \partial tXh\| 2L2ds,

where we have used the inequality

\| hjq(t) - qj(t)\| 2L2(Ij)
= h2

j\| q - qh\| 2L2(Ij)
\geq Ch2\| q - qh\| 2L2(Ij)

.

Finally, the desired estimate is concluded by a Gronwall argument.

We are now in a position to prove Theorem 2.5.

Proof of Theorem 2.5. Since the nonlinear terms in (3.1) are locally Lipschitz
with respect to Xj , the local existence and uniqueness are guaranteed by standard
ODE theory. Let T \ast \in (0, T ) be the maximal time such that the semidiscrete solution
Xh exists and the following estimates hold:

inf | \partial \xi Xh| \geq \kappa 1/2 and sup | \partial \xi Xh| \leq 2\kappa 2 \forall t\in [0, T \ast ].(4.9)

Combining Lemmas 4.1 and 4.4 and employing Gronwall's argument, we can obtain
that for any t\in [0, T \ast ] the following holds:\int t

0

\int 
\BbbS 1
| \partial tX  - \partial tXh| 2 qhd\xi ds+ sup

0\leq s\leq t

\int 
\BbbS 1
| \scrT  - \scrT h| 2 qhd\xi \leq Ch2.(4.10)
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Plugging this back into Lemma 4.4, we obtain, for any t\in [0, T \ast ],

\| q - qh\| 2L2 \leq Ch2.(4.11)

By Lemma 4.2, there exists h0 > 0 depending on Cp,CP , \kappa 1, \kappa 2, T , and K(X) such
that for any 0<h\leq h0, we have

inf | \partial \xi Xh| \geq 3\kappa 1/4 and sup | \partial \xi Xh| \leq 3\kappa 2/2 at t= T \ast .

By standard ODE theory, we can uniquely extend the above semidiscrete solution in
a neighborhood of T \ast . And by continuity, we obtain

inf | \partial \xi Xh| \geq \kappa 1/2 and sup | \partial \xi Xh| \leq 2\kappa 2 in a neighborhood of T \ast .

This contradicts the maximality of T \ast , and thus T \ast = T . Thus (4.9)--(4.11) hold
for t \in [0, T ], and the nondegeneration property (2.6) follows by (4.9) and Assump-
tion 2.1 by noticing that qj = hjqh. We derive the error estimate by integration and
(4.4):

\| X(\cdot , t) - Xh(\cdot , t)\| 2H1 =

\int 
\BbbS 1
| X  - Xh| 2d\xi +

\int 
\BbbS 1
| \partial \xi X  - \partial \xi Xh| 2d\xi 

\leq 2

\int 
\BbbS 1

\biggl( \int t

0

\partial tX  - \partial tXhds

\biggr) 2

d\xi +2\| X0  - IhX
0\| 2L2+\| q - qh\| 2L2+

\int 
\BbbS 1
| \scrT  - \scrT h| 2qqhd\xi 

\leq 2

\int 
\BbbS 1
T

\int t

0

| \partial tX  - \partial tXh| 2dsd\xi +Ch2 \leq Ch2,

and the proof is completed.

5. Numerical results. In this section, we present a fully discrete version of
(2.4) to simulate the AP-CSF. Choose an integer m, and set the time step \tau = T/m,
tk = k\tau , k = 0, . . . ,m. For simplicity, we choose a uniform mesh, i.e., \xi j = jh for

0 \leq j \leq N and h = 2\pi 
N . We take X0

h = IhX
0. For k \geq 1, find Xk

h =
\sum N

j=1X
k
j \varphi j \in Vh

by\int 
\BbbS 1

\bigm| \bigm| \partial \xi Xk - 1
h

\bigm| \bigm| \delta \tau Xk
h \cdot vhd\xi +

\int 
\BbbS 1
\partial \xi X

k
h \cdot \partial \xi vh/

\bigm| \bigm| \partial \xi Xk - 1
h

\bigm| \bigm| d\xi 
+

\int 
\BbbS 1
h2| \partial \xi Xk - 1

h | \partial \xi \delta \tau Xk
h \cdot \partial \xi vh/6 d\xi +

\int 
\BbbS 1
2\pi (\partial \xi X

k
h)

\bot \cdot vh/Lk - 1
h d\xi = 0 \forall vh \in Vh,

where \delta \tau is the backward finite difference \delta \tau X
m
h = (Xm

h  - Xm - 1
h )/\tau , and Lk - 1

h is the
perimeter of the curve of Xk - 1

h . Or, it can be written equivalently as a discretization
for the ODE system (3.1):

qk - 1
j + qk - 1

j+1

2\tau 

\bigl( 
Xk

j  - Xk - 1
j

\bigr) 
 - 

Xk
j+1  - Xk

j

qk - 1
j+1

+
Xk

j  - Xk
j - 1

qk - 1
j

+
\pi 

Lk - 1
h

\bigl( 
Xk

j+1  - Xk
j - 1

\bigr) \bot 
= 0.

First, we test the convergence rates in the L2 norm, H1 seminorm, and the error
of velocity, respectively. Since the exact solution of the AP-CSF (1.2) is unknown, we
consider the following numerical errors:
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(\scrE 1)h,\tau (T ) := max
1\leq k\leq T/\tau 

\bigm\| \bigm\| Xk
h,\tau  - X4k

h/2,\tau /4

\bigm\| \bigm\| 
L2(\BbbS 1),

(\scrE 2)h,\tau (T ) := max
1\leq k\leq T/\tau 

\bigm\| \bigm\| \partial \xi Xk
h,\tau  - \partial \xi X

4k
h/2,\tau /4

\bigm\| \bigm\| 
L2(\BbbS 1),

(\scrE 3)h,\tau (T ) :=

\left(  T/\tau  - 1\sum 
k=0

\tau 
\bigm\| \bigm\| \bigm\| Xk+1

h,\tau  - Xk
h,\tau 

\tau 
 - 

X4k+1
h/2,\tau /4  - X4k

h/2,\tau /4

\tau /4

\bigm\| \bigm\| \bigm\| 2
L2(\BbbS 1)

\right)  1/2

,

where Xk
h,\tau represents the solution obtained by the above fully discrete scheme with

mesh size h and time step \tau . The corresponding convergence order is defined as

Orderi = log

\Biggl( 
(\scrE i)h,\tau (T )

(\scrE i)h/2,\tau /4 (T )

\Biggr) \Big/ 
log 2, i= 1,2,3.

The errors and convergence orders are displayed in Table 5.1, where we choose
h = 2\pi /N and \tau = 0.5h2 and the initial value is given by X0(\xi ) = (2cos \xi , sin \xi ).
The results indicate that the numerical solution converges linearly in space in the H1

seminorm, which agrees with the theoretical analysis in Theorem 2.5. We can also
observe that the solution and the velocity converge quadratically in L\infty 

t L2
x and L2

tL
2
x,

respectively, which is superior to the analytical result in Theorem 2.5.
Finally, we check the structure-preserving properties of our algorithm, for which

we take very tiny time step size \tau such that the temporal error can be ignored. As
is shown in Figure 5.1(a), the length of the curve is decreasing during the evolution,
which confirms the theoretical analysis in Theorem 2.4. Furthermore, Figure 5.1(a)
shows that the area is almost preserving, and, more specifically, Figure 5.1(b) indicates
that the area enclosed by the curve has a numerical error at \scrO (h2). The evolution
of the polygon with the number of grid points N = 15, which approximates the
evolution of the ellipse determined by x2/4 + y2 = 1, is shown in Figure 5.2, from
which we clearly see that the polygon remains convex during the evolution, which
verifies the convexity-preserving property in Theorem 2.3.

Table 5.1
Numerical errors up to T = 1/4.

N (\scrE 1)h,\tau (1/4) Order1 (\scrE 2)h,\tau (1/4) Order2 (\scrE 3)h,\tau (1/4) Order3

16 2.08E-2 - 1.15E-0 - 3.09E-2 -
32 5.42E-3 1.94 6.01E-1 0.94 1.01E-2 1.61

64 1.37E-3 1.99 3.03E-1 0.99 2.76E-3 1.87
128 3.42E-4 2.00 1.52E-1 1.00 7.09E-4 1.96

0 0.5 1 1.5 2

6

6.5

7

7.5

8

8.5

9

9.5

10

Perimeter

Area

10
-2

10
-1

-10
-3

-10
-4

-10
-5

(a) (b)

Fig. 5.1. Numerical results for an initial ellipse curve (i.e., x2

4
+ y2 = 1): (a) Evolution of the

perimeter and area; (b) the area loss at T = 1/4 for different N .
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Fig. 5.2. The evolution of an initial convex polygon under the AP-CSF.

REFERENCES

[1] F. Almgren, J. E. Taylor, and L. Wang, Curvature-driven flows: A variational approach,
SIAM J. Control Optim., 31 (1993), pp. 387--438, https://doi.org/10.1137/0331020.

[2] B. Andrews, B. Chow, C. Guenther, and M. Langford, Extrinsic Geometric Flows, Grad.
Stud. in Math. 206, AMS, Providence, RI, 2020.

[3] W. Bao, H. Garcke, R. N\"urnberg, and Q. Zhao, Volume-preserving parametric finite el-
ement methods for axisymmetric geometric evolution equations, J. Comput. Phys., 460
(2022), 111180.

[4] W. Bao and Q. Zhao, A structure-preserving parametric finite element method for surface
diffusion, SIAM J. Numer. Anal., 59 (2021), pp. 2775--2799, https://doi.org/10.1137/
21M1406751.

[5] J. W. Barrett, K. Deckelnick, and V. Styles, Numerical analysis for a system coupling
curve evolution to reaction diffusion on the curve, SIAM J. Numer. Anal., 55 (2017), pp.
1080--1100, https://doi.org/10.1137/16M1083682.

[6] J. W. Barrett, H. Garcke, and R. N\"urnberg, On the variational approximation of combined
second and fourth order geometric evolution equations, SIAM J. Sci. Comput., 29 (2007),
pp. 1006--1041, https://doi.org/10.1137/060653974.

[7] J. W. Barrett, H. Garcke, and R. N\"urnberg, A parametric finite element method for
fourth order geometric evolution equations, J. Comput. Phys., 222 (2007), pp. 441--467.

[8] J. W. Barrett, H. Garcke, and R. N\"urnberg, On the parametric finite element approxi-
mation of evolving hypersurfaces in \BbbR 3, J. Comput. Phys., 227 (2008), pp. 4281--4307.

[9] J. W. Barrett, H. Garcke, and R. N\"urnberg, Numerical approximation of anisotropic
geometric evolution equations in the plane, IMA J. Numer. Anal., 28 (2008), pp. 292--330.

[10] J. W. Barrett, H. Garcke, and R. N\"urnberg, Variational discretization of axisymmetric
curvature flows, Numer. Math., 141 (2019), pp. 791--837.

[11] J. W. Barrett, H. Garcke, and R. N\"urnberg, Parametric finite element method approxi-
mations of curvature driven interface evolutions, in Handbook of Numerical Analysis 21,
A. Bonito and R. H. Nochetto, eds., North-Holland, Amsterdam, 2020, pp. 275--423.

[12] S. C. Brenner and L. R. Scott, The Mathematical Theory of Finite Element Methods,
Springer, New York, 2008.

[13] L. Bronsard and B. Stoth, Volume-preserving mean curvature flow as a limit of a
nonlocal Ginzburg--Landau equation, SIAM J. Math. Anal., 28 (1997), pp. 769--807,
https://doi.org/10.1137/S0036141094279279.

[14] B. Chow and D. Glickenstein, Semidiscrete geometric flows of polygons, Amer. Math.
Monthly, 114 (2007), pp. 316--328.

[15] K. Deckelnick and G. Dziuk, On the approximation of the curve shortening flow , in Calculus
of Variations, Applications and Computations (Pont-\`a-Mousson, 1994), Pitman Res. Notes
Math. Ser. 326, Longman Sci. Tech., Harlow, UK, 1995, pp. 100--108.

[16] K. Deckelnick, G. Dziuk, and C. M. Elliott, Computation of geometric partial differential
equations and mean curvature flow , Acta Numer., 14 (2005), pp. 139--232.

[17] M. P. do Carmo, Differential Geometry of Curves and Surfaces, Dover, Mineola, NY, 2016.
[18] G. Dziuk, An algorithm for evolutionary surfaces, Numer. Math., 58 (1991), pp. 603--611.
[19] G. Dziuk, Convergence of a semi-discrete scheme for the curve shortening flow , Math. Models

Methods Appl. Sci., 4 (1994), pp. 589--606.
[20] G. Dziuk, Discrete anisotropic curve shortening flow , SIAM J. Numer. Anal., 36 (1999), pp.

1808--1830, https://doi.org/10.1137/S0036142998337533.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

05
/1

5/
25

 to
 8

6.
14

2.
19

.2
1 

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

https://doi.org/10.1137/0331020
https://doi.org/10.1137/21M1406751
https://doi.org/10.1137/21M1406751
https://doi.org/10.1137/16M1083682
https://doi.org/10.1137/060653974
https://doi.org/10.1137/S0036141094279279
https://doi.org/10.1137/S0036142998337533


2010 WEI JIANG, CHUNMEI SU, AND GANGHUI ZHANG

[21] C. M. Elliott and H. Fritz, On approximations of the curve shortening flow and of the mean
curvature flow based on the DeTurck trick , IMA J. Numer. Anal., 37 (2016), pp. 543--603.

[22] J. Escher and G. Simonett, The volume preserving mean curvature flow near spheres, Proc.
Amer. Math. Soc., 126 (1998), pp. 2789--2796.

[23] M. Gage, On an area-preserving evolution equation for plane curves. Nonlinear problems in
geometry, Contemp. Math., 51 (1986), pp. 51--62.

[24] P. M. Gruber, Convex and Discrete Geometry, Grundlehren Math. Wiss. 336, Springer, Berlin,
2007.

[25] G. Huisken, The volume preserving mean curvature flow , J. Reine Angew. Math., 382 (1987),
pp. 35--48.

[26] J. Hu and B. Li, Evolving finite element methods with an artificial tangential velocity for mean
curvature flow and Willmore flow , Numer. Math., 152 (2022), pp. 127--181.

[27] C. D. Italo, F. Stefano, and M. Riccardo, Area-preserving curve-shortening flows: From
phase separation to image processing, Interfaces Free Bound., 4 (2002), pp. 325--343.

[28] W. Jiang and B. Li, A perimeter-decreasing and area-conserving algorithm for surface diffu-
sion flow of curves, J. Comput. Phys., 443 (2021), 110531.

[29] C. Kublik, S. Esedo\=\mathrm{G}lu, and J. A. Fessler, Algorithms for area preserving flows, SIAM J.
Sci. Comput., 33 (2011), pp. 2382--2401, https://doi.org/10.1137/100815542.

[30] B. Kov\'acs, B. Li, and C. Lubich, A convergent evolving finite element algorithm for mean
curvature flow of closed surfaces, Numer. Math., 143 (2019), pp. 797--853.

[31] B. Kov\'acs, B. Li, and C. Lubich, A convergent evolving finite element algorithm for Willmore
flow of closed surfaces, Numer. Math., 149 (2021), pp. 595--643.

[32] A. Laurain and S. W. Walker, Optimal control of volume-preserving mean curvature flow ,
J. Comput. Phys., 438 (2021), 110373.

[33] B. Li, Convergence of Dziuk's linearly implicit parametric finite element method for
curve shortening flow , SIAM J. Numer. Anal., 58 (2020), pp. 2315--2333, https://
doi.org/10.1137/19M1305483.

[34] B. Li, Convergence of Dziuk's semidiscrete finite element method for mean curvature flow
of closed surfaces with high-order finite elements, SIAM J. Numer. Anal., 59 (2021), pp.
1592--1617, https://doi.org/10.1137/20M136935X.

[35] U. Mayer, A numerical scheme for moving boundary problems that are gradient flows for the
area functional , European J. Appl. Math., 11 (2000), pp. 61--80.

[36] K. Mikula and D. \v Sev\v covi\v c, Computational and qualitative aspects of evolution of curves
driven by curvature and external force, Comput. Vis. Sci., 6 (2004), pp. 211--225.

[37] L. Mugnai and C. Seis, On the coarsening rates for attachment-limited kinetics, SIAM J.
Math. Anal., 45 (2013), pp. 324--344, https://doi.org/10.1137/120865197.

[38] L. Pei and Y. Li, A Structure-preserving Parametric Finite Element Method for Area-
conserved Generalized Mean Curvature Flow , https://arxiv.org/abs/2211.13582v1, 2022.

[39] P. Pozzi and B. Stinner, Curve shortening flow coupled to lateral diffusion, Numer. Math.,
135 (2017), pp. 1171--1205.

[40] S. Ruuth and B. T. R. Wetton, A simple scheme for volume-preserving motion by mean
curvature, J. Sci. Comput., 19 (2003), pp. 373--384.

[41] K. Sakakibara and Y. Miyatake, A fully discrete curve-shortening polygonal evolution law
for moving boundary problems, J. Comput. Phys., 424 (2021), 109857.

[42] J. E. Taylor and J. W. Cahn, Linking anisotropic sharp and diffuse surface motion laws via
gradient flows, J. Statist. Phys., 77 (1994), pp. 183--197.

[43] T. Ushijima and S. Yazaki, Convergence of a crystalline approximation for an area-preserving
motion, J. Comput. Appl. Math., 166 (2004), pp. 427--452.

[44] C. Ye and J. Cui, Convergence of Dziuk's fully discrete linearly implicit scheme
for curve shortening flow , SIAM J. Numer. Anal., 59 (2021), pp. 2823--2842,
https://doi.org/10.1137/21M1391626.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

05
/1

5/
25

 to
 8

6.
14

2.
19

.2
1 

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

https://doi.org/10.1137/100815542
https://doi.org/10.1137/19M1305483
https://doi.org/10.1137/19M1305483
https://doi.org/10.1137/20M136935X
https://doi.org/10.1137/120865197
https://arxiv.org/abs/2211.13582v1
https://doi.org/10.1137/21M1391626

	Introduction
	Spatial discretization and main results
	Convexity-preserving and perimeter-decreasing properties
	Proof of Theorem&#x2009;&#x2009;<0:xref 0:ref-type="statement" 0:rid="the2-3" >2.3</0:xref>
	Proof of Theorem&#x2009;&#x2009;<0:xref 0:ref-type="statement" 0:rid="the2-4" ><0:bold >2.4</0:bold></0:xref>

	Proof of Theorem&#x2009;&#x2009;<0:xref 0:ref-type="statement" 0:rid="the2-5" >2.5</0:xref>
	Numerical results
	References

